p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.430C23, C23.644C24, C22.3162- 1+4, C22.4172+ 1+4, C42⋊8C4⋊58C2, (C2×C42).92C22, C23.186(C4○D4), (C23×C4).485C22, (C22×C4).567C23, C23.7Q8.70C2, C23.8Q8.55C2, C23.Q8.34C2, C23.11D4.42C2, C23.34D4.30C2, C23.83C23⋊96C2, C24.C22.60C2, C23.63C23⋊160C2, C23.81C23⋊108C2, C2.96(C22.45C24), C2.C42.348C22, C2.29(C22.56C24), C2.93(C22.46C24), C2.49(C22.35C24), C2.86(C22.33C24), C2.39(C22.49C24), (C2×C4).445(C4○D4), (C2×C4⋊C4).455C22, C22.505(C2×C4○D4), (C2×C22⋊C4).62C22, SmallGroup(128,1476)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.430C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=bcd, f2=c, g2=b, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, ag=ga, bc=cb, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >
Subgroups: 372 in 196 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C23.7Q8, C23.34D4, C42⋊8C4, C23.8Q8, C23.63C23, C24.C22, C23.Q8, C23.11D4, C23.81C23, C23.83C23, C24.430C23
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.33C24, C22.35C24, C22.45C24, C22.46C24, C22.49C24, C22.56C24, C24.430C23
(2 11)(4 9)(5 61)(6 49)(7 63)(8 51)(14 25)(16 27)(17 62)(18 50)(19 64)(20 52)(21 58)(22 40)(23 60)(24 38)(30 48)(32 46)(33 59)(34 37)(35 57)(36 39)(41 56)(43 54)
(1 55)(2 56)(3 53)(4 54)(5 61)(6 62)(7 63)(8 64)(9 43)(10 44)(11 41)(12 42)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 58)(22 59)(23 60)(24 57)(25 32)(26 29)(27 30)(28 31)(33 40)(34 37)(35 38)(36 39)
(1 44)(2 41)(3 42)(4 43)(5 52)(6 49)(7 50)(8 51)(9 54)(10 55)(11 56)(12 53)(13 31)(14 32)(15 29)(16 30)(17 62)(18 63)(19 64)(20 61)(21 39)(22 40)(23 37)(24 38)(25 46)(26 47)(27 48)(28 45)(33 59)(34 60)(35 57)(36 58)
(1 12)(2 9)(3 10)(4 11)(5 18)(6 19)(7 20)(8 17)(13 26)(14 27)(15 28)(16 25)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(37 58)(38 59)(39 60)(40 57)(41 54)(42 55)(43 56)(44 53)(49 64)(50 61)(51 62)(52 63)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 50 44 7)(2 19 41 64)(3 52 42 5)(4 17 43 62)(6 54 49 9)(8 56 51 11)(10 63 55 18)(12 61 53 20)(13 39 31 21)(14 33 32 59)(15 37 29 23)(16 35 30 57)(22 46 40 25)(24 48 38 27)(26 60 47 34)(28 58 45 36)
(1 28 55 31)(2 46 56 14)(3 26 53 29)(4 48 54 16)(5 21 61 58)(6 40 62 33)(7 23 63 60)(8 38 64 35)(9 30 43 27)(10 13 44 45)(11 32 41 25)(12 15 42 47)(17 59 49 22)(18 34 50 37)(19 57 51 24)(20 36 52 39)
G:=sub<Sym(64)| (2,11)(4,9)(5,61)(6,49)(7,63)(8,51)(14,25)(16,27)(17,62)(18,50)(19,64)(20,52)(21,58)(22,40)(23,60)(24,38)(30,48)(32,46)(33,59)(34,37)(35,57)(36,39)(41,56)(43,54), (1,55)(2,56)(3,53)(4,54)(5,61)(6,62)(7,63)(8,64)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,58)(22,59)(23,60)(24,57)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39), (1,44)(2,41)(3,42)(4,43)(5,52)(6,49)(7,50)(8,51)(9,54)(10,55)(11,56)(12,53)(13,31)(14,32)(15,29)(16,30)(17,62)(18,63)(19,64)(20,61)(21,39)(22,40)(23,37)(24,38)(25,46)(26,47)(27,48)(28,45)(33,59)(34,60)(35,57)(36,58), (1,12)(2,9)(3,10)(4,11)(5,18)(6,19)(7,20)(8,17)(13,26)(14,27)(15,28)(16,25)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,58)(38,59)(39,60)(40,57)(41,54)(42,55)(43,56)(44,53)(49,64)(50,61)(51,62)(52,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,50,44,7)(2,19,41,64)(3,52,42,5)(4,17,43,62)(6,54,49,9)(8,56,51,11)(10,63,55,18)(12,61,53,20)(13,39,31,21)(14,33,32,59)(15,37,29,23)(16,35,30,57)(22,46,40,25)(24,48,38,27)(26,60,47,34)(28,58,45,36), (1,28,55,31)(2,46,56,14)(3,26,53,29)(4,48,54,16)(5,21,61,58)(6,40,62,33)(7,23,63,60)(8,38,64,35)(9,30,43,27)(10,13,44,45)(11,32,41,25)(12,15,42,47)(17,59,49,22)(18,34,50,37)(19,57,51,24)(20,36,52,39)>;
G:=Group( (2,11)(4,9)(5,61)(6,49)(7,63)(8,51)(14,25)(16,27)(17,62)(18,50)(19,64)(20,52)(21,58)(22,40)(23,60)(24,38)(30,48)(32,46)(33,59)(34,37)(35,57)(36,39)(41,56)(43,54), (1,55)(2,56)(3,53)(4,54)(5,61)(6,62)(7,63)(8,64)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,58)(22,59)(23,60)(24,57)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39), (1,44)(2,41)(3,42)(4,43)(5,52)(6,49)(7,50)(8,51)(9,54)(10,55)(11,56)(12,53)(13,31)(14,32)(15,29)(16,30)(17,62)(18,63)(19,64)(20,61)(21,39)(22,40)(23,37)(24,38)(25,46)(26,47)(27,48)(28,45)(33,59)(34,60)(35,57)(36,58), (1,12)(2,9)(3,10)(4,11)(5,18)(6,19)(7,20)(8,17)(13,26)(14,27)(15,28)(16,25)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,58)(38,59)(39,60)(40,57)(41,54)(42,55)(43,56)(44,53)(49,64)(50,61)(51,62)(52,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,50,44,7)(2,19,41,64)(3,52,42,5)(4,17,43,62)(6,54,49,9)(8,56,51,11)(10,63,55,18)(12,61,53,20)(13,39,31,21)(14,33,32,59)(15,37,29,23)(16,35,30,57)(22,46,40,25)(24,48,38,27)(26,60,47,34)(28,58,45,36), (1,28,55,31)(2,46,56,14)(3,26,53,29)(4,48,54,16)(5,21,61,58)(6,40,62,33)(7,23,63,60)(8,38,64,35)(9,30,43,27)(10,13,44,45)(11,32,41,25)(12,15,42,47)(17,59,49,22)(18,34,50,37)(19,57,51,24)(20,36,52,39) );
G=PermutationGroup([[(2,11),(4,9),(5,61),(6,49),(7,63),(8,51),(14,25),(16,27),(17,62),(18,50),(19,64),(20,52),(21,58),(22,40),(23,60),(24,38),(30,48),(32,46),(33,59),(34,37),(35,57),(36,39),(41,56),(43,54)], [(1,55),(2,56),(3,53),(4,54),(5,61),(6,62),(7,63),(8,64),(9,43),(10,44),(11,41),(12,42),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,58),(22,59),(23,60),(24,57),(25,32),(26,29),(27,30),(28,31),(33,40),(34,37),(35,38),(36,39)], [(1,44),(2,41),(3,42),(4,43),(5,52),(6,49),(7,50),(8,51),(9,54),(10,55),(11,56),(12,53),(13,31),(14,32),(15,29),(16,30),(17,62),(18,63),(19,64),(20,61),(21,39),(22,40),(23,37),(24,38),(25,46),(26,47),(27,48),(28,45),(33,59),(34,60),(35,57),(36,58)], [(1,12),(2,9),(3,10),(4,11),(5,18),(6,19),(7,20),(8,17),(13,26),(14,27),(15,28),(16,25),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(37,58),(38,59),(39,60),(40,57),(41,54),(42,55),(43,56),(44,53),(49,64),(50,61),(51,62),(52,63)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,50,44,7),(2,19,41,64),(3,52,42,5),(4,17,43,62),(6,54,49,9),(8,56,51,11),(10,63,55,18),(12,61,53,20),(13,39,31,21),(14,33,32,59),(15,37,29,23),(16,35,30,57),(22,46,40,25),(24,48,38,27),(26,60,47,34),(28,58,45,36)], [(1,28,55,31),(2,46,56,14),(3,26,53,29),(4,48,54,16),(5,21,61,58),(6,40,62,33),(7,23,63,60),(8,38,64,35),(9,30,43,27),(10,13,44,45),(11,32,41,25),(12,15,42,47),(17,59,49,22),(18,34,50,37),(19,57,51,24),(20,36,52,39)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 4A | ··· | 4P | 4Q | ··· | 4V |
order | 1 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C24.430C23 | C23.7Q8 | C23.34D4 | C42⋊8C4 | C23.8Q8 | C23.63C23 | C24.C22 | C23.Q8 | C23.11D4 | C23.81C23 | C23.83C23 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 2 | 2 | 8 | 4 | 2 | 2 |
Matrix representation of C24.430C23 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 4 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,4,0,0,0,0,2,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,1,0,0,0,0,0,1] >;
C24.430C23 in GAP, Magma, Sage, TeX
C_2^4._{430}C_2^3
% in TeX
G:=Group("C2^4.430C2^3");
// GroupNames label
G:=SmallGroup(128,1476);
// by ID
G=gap.SmallGroup(128,1476);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,232,758,723,100,1571,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b*c*d,f^2=c,g^2=b,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,a*g=g*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations